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Abstract—The Li-Strahler canopy reflectance model, driven by
Landsat Thematic Mapper (TM) data, provided regional estimates of
tree size and density in two bioclimatic zones in West Africa. This model
exploits tree geometry in an inversion technique to predict average tree
size and density from reflectance data using a few simple parameters
measured in the field (spatial pattern, shape, and size distribution of
trees) and in the imagery (spectral signatures of scene components).
Trees are treated as simply shaped objects, and multispectral reflec-
tance of a pixel is assumed to be related only to the proportions of tree
crown, shadow, and understory in the pixel. These, in turn, are a di-
rect function of the number and size of trees, the solar illumination
angle, and the spectral signatures of crown, shadow, and understory.
Given the variance in reflectance from pixel to pixel within a homoge-
neous area of woodland, caused by the variation in the number and size
of trees, the model can be inverted to give estimates of average tree
size and density. Because the inversion is sensitive to correct determi-
nation of component signatures, which is a difficult procedure at best,
predictions of size and spacing are not very accurate within small (i.e.,
10-100 ha) areas. However, individual errors cancel when larger re-
gions are considered, and the procedure may predict size and density
of trees over large areas of open woodland with good accuracy.

Keywords—Biophysical remote sensing, West Africa, savanna, dis-
crete object modeling, Landsat Thematic Mapper.

I. INTRODUCTION

EMOTELY sensed data are commonly used to pro-

duce thematic land-cover maps, but also can provide
quantitative information on biophysical variables, such as
vegetation structure, amount, productivity, (reviewed in
[1] and [2]), photosynthesis, and transpiration [3], [4].
These biophysical characteristics of vegetation and their
spatial and temporal distribution are critical inputs to eco-
logical models that describe the interaction between the
land surface and climate, energy balance, and hydrologic
and biogeochemical cycles [5]-[11]. Remote sensing pro-
vides the only tool that can measure these variables for
large areas [12]-[14]. In this paper we use a canopy re-
flectance model and multispectral satellite data to estimate
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canopy structure in sparse woodland, a vegetation type of
great spatial extent and importance.

A family of mathematical models of the reflectance of
a plant canopy composed of discontinuous woody cover
allows the direct estimation of plant size and density from
remotely sensed reflectance data [15]. These Li-Strahler
models are geometric in character, treating trees (plants)
as solid, discrete, three-dimensional objects on a contrast-
ing background. They use geometric optics to estimate
the proportion of each pixel in tree canopy, shadow, and
background. In the simplest model, tree density is as-
sumed to be sufficiently low that the overlapping of trees
and shadows may be ignored. Using this simple model,
Li and Strahler [15] predicted tree size and density from
Landsat MSS data within ten percent of actual values for
sparse pine forest in northern California.

We have extended this model and tested it using Land-
sat Thematic Mapper (TM) data in a different environ-
ment where the basic assumptions of the model hold, but
the parameters must be modified. The model was tested
in sparse woodland and wooded grassland in the Sahelian
and Sudanian bioclimatic zones in West Africa.

II. BACKGROUND

In plant canopy reflectance modeling, radiative transfer
theory and geometric optics are used to predict the reflec-
tance of a plant canopy as a function of the biophysical
properties of the canopy elements, such as the size, shape,
spatial distribution, and optical properties of plants or
plant parts. If a reflectance model can be mathematically
inverted, the biophysical properties of the plant stand can
be inferred from spectral reflectance measurements. The
simple Li-Strahler model describes reflectance as a func-
tion of vegetation structure for a canopy composed of large
woody plants distributed at low density on the landscape.
The model represents an early formulation of a general
modeling approach that explicitly treats the interaction of
three-dimensional illuminated discrete objects with the
spatial sampling interval imposed by a digital image [16]-
[25]. In the simple model it is assumed that the canopy is
imaged by a multispectral scanner with pixel size several
times larger than tree size, but with resolution fine enough
that the sampling unit interacts with the size and place-
ment of the trees. Thus, the model predicts variance as
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well as average reflectance. It uses covariance statistics
from estimated mixtures of scene components across pix-
els for inversion to predict average tree size and density
in a stand. While other canopy models are invertible, most
predict the bidirectional reflectance distribution function
(BRDF) of a canopy, and in inversion use field or aircraft
radiometric measurements from varying look angles to
predict some property of the vegetation, such as leaf area
index (LAI) [26]-[30], or leaf reflectance [31]. The Li-
Strahler model is different from these other models in that
it explicitly considers discretely distributed trees.

A. Formulation of the Canopy Model

The simple Li-Strahler model is discussed in detail
elsewhere [15], [32] and will be reviewed in this section
for clarity. The only modification to the simple model is
the change in the shape parameter. The model assumes
that a woodland stand can be modeled geometrically as a
group of solid objects (trees) with simple shapes, casting
shadows on a contrasting background (understory, grass
or soil). Furthermore:

1) A tree crown is a simple geometric form. In the
sparse woodland, we use an ellipsoid on a stick (Fig. 1)
for trees of all sizes.

2) Tree counts vary from pixel to pixel as a Poisson
function with a fixed density, i.e., the spatial pattern is
random at the scale of sensor resolution.

3) The size distribution function of trees is known, so
that C,., the coefficient of variation of squared crown ra-
dius, can be determined for the stand.

4) The tree crown and its associated shadow have spec-
tral signatures that are distinct from that of the back-
ground.

The reflectance of a pixel is modeled as a linear com-
bination of the signatures of scene components (illumi-
nated tree crown, illuminated background, shadowed tree,
and shadowed background) weighted by their relative
areas. Pixels from an area of homogeneous tree cover can
be used to estimate average reflectance of a stand of a
given density. Interpixel variance exists because the num-
ber of trees per pixel and their size distribution vary. In
the simple model, we ignore overlapping of trees and
shadows, which would also produce pixel-to-pixel vari-
ance. Other proportion estimation models similarly pre-
dict cover as a function of brightness in canopies with
incomplete cover [33]-[38]. This effect has been modeled
by Otterman [39], [40]. However, the Li-Strahler model
solves for tree size and density using the distribution func-
tions and statistical independence of these two parame-
ters.

1) Model Parameters: The variables describing the
stand are:

A Area of a pixel.

n  Number of trees in a pixel.

N  Average density of trees per square meter in a
stand (= 71/A).

r?  Squared crown radius of tree.

Fig. 1. Tree shape and illumination geometry for an ellipsoid on a stick.

R* Average r? for a pixel.

R* Average R” for all pixels in a stand.

C,2 Coefficient of variation of squared crown radius
determined for stand.

m = NR>.

Note that since 7w R? is the average area of a crown, mr is
the proportion of woody cover in the stand.

As a three-dimensional object, the ellipsoid on a stick
casts a shadow on the background. To quantify the area
of canopy and shadow, a geometric factor I is used. T is
defined such that mI is the proportion of a pixel covered
by tree crown and shadow (i.e., the tree cover adjusted to
include shadowing). Based on the geometry of an ellip-
soid illuminated at solar zenith angle 8 (Fig. 1)

I'= + — A
T s 0 0
where
r 1
0, if (b +nh 1+
if ( Ytan 6 > r -
A =1 r(B—1/2sin28) 1+ T else
[
and
h 1 —cos §'
_ -1 n 1 —cos &
\8 = cos [(1 + b> < — ﬂ
and

" = tan™" <(tr%b0)>

While we tested the model in areas of flat terrain, it is
a simple modification to adjust the shadowing geometry
for a sloping surface [41]. If 4,, A, A, and A4, are the
areas of sunlit background and crown, and shadowed
background and crown within the pixel, then

A+ A+ A, =ml
and
A, =1 —ml.
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The signature of pixel 7 in band j, S, is then modeled
as

S;=(A,- G) + (A - C)) + (A, - Z}) + (4, - T))
(1)

where G, C, Z, and T are the refiectance signatures for a
unit area of sunlit background and crown, and shadowed
background and crown, respectively. Equation (1) can be
written

S;=A, - G+ (1 = A4,) X,
where X is the average reflectance of a tree and its as-
sociated shadow.

Fig. 2 (modified from [15]) shows an idealized plot of
the four spectral components on greenness (i.e., infrared
to red contrast) and brightness spectral axes. A bright soil
background (G ) has high brightness and low greenness,
and sunlit canopy (C) has high greenness and is less
bright than the background. Shadowed canopy (7) and
background (Z ) are less bright and less green. The com-
posite tree signature X, falls within the triangle CTZ.
When cover is low, the pixel signature S varies along the
line GX, with distance from G proportional to tree cover
(m). However, as the cover increases, the proportion of
shadowed background decreases and the relative propor-
tion of sunlit crown increases. This occurs because shad-
ows fall on the near-vertical sides of trees instead of the
background, and are thus less visible from nadir. At full
canopy closure, only sunlit and shadowed crowns are
present. The composite tree signature is then X,,, which
falls on the line TC. As coverage increases, the signature
will thus diverge from the line GX, toward X, and the
simple (linear) model is no longer appropriate.

Substituting the expressions for A, and (1 — A4,), drop-
ping the subscripts in (1) for convenience, and solving for
m we have for each pixel

G-3S
= —". 2
" T TG -X,) 2)
From (2) we can derive the variance of m
V(S
Vim) = —2EL__ 3)
I'[(G - X,)]

where V() is the variance in reflectance for all pixels in
the stand.

For multiple spectral bands m should be the same if
determined from any band. However, variance in the sig-
natures and stand parameters will cause m to vary, and
thus m can be taken as a weighted average or selected as
the median value.

2) Model Sensitivity: The sensitivity of this model to
noise in § and the component signatures, and to errors in
estimation of parameters, can be shown by taking the par-
tial derivative of m with respect to these variables.
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Greenness

Brightness

Fig. 2. Idealized plot of spectral components on brightness and greenness
spectral axes. G and C, Z and T are spectral signatures of illuminated
and shadowed background and crown. X, is the composite signature of
a tree and its shadows, approaching X, as cover increases.

am -1
S T(G — X,)

om S*XO 1

G T(G-x,) T(G-X)

(because when cover is low S = G)

a_m_ G-S§ m
3Xo T(G - XO)2 G- Xo
om S-G —-m

ar Ti(G-X,) T

When the spectral contrast between background and tree
is high, sensitivity to noise in §, G, and X, will be re-
duced, because (G — X;) is in the denominator. When
density is low (m is small), noise or error in estimating
X, and T are less important than the contrast between tree
and background (G — X, ), because m is in the numerator.
3) Inversion of the Model: If size and density are in-
dependent, then the expressions for the mean and variance
of independent products can be applied [15, p. 709]. If
V(R®) = V(r*)/n = V(r*)/N, then
V(im) = (N + C:N + Cp) (R
= (M + C2M + C.R*) R’ (4)

where M is the average m in the stand. Solving for R?, we
obtain

[(1+ CoY M? + av(m)Ca] = (1 + Co)M
2Ca '

RZ

(5)
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Applying the approximation V1 + x =
tain

1 + x/2, we ob-

V(m)

R = ——"—,
(1 + C,Z)M

(6)
This should be reasonably accurate if V(m) is fairly large.
Finally, substituting (2) and (3), the expressions for mean
and variance of m, into (5) or (6), R and N can be found
from the reflectance values of the pixels in a stand.

III. StupY SITES IN MALI

The Li-Strahler model was originally developed and
tested for sparse pine woodland in northeastern Califor-
nia. However, there are many other landscapes for which
the assumptions of the model hold: Acacia and broadleaf
savanna or woodland in Africa also consist of trees at low
density, with a uniform, contrasting understory of grass
or soil at some point in the annual cycle. Further, the
plants can be regarded as having simple shapes, invariant
with size, and with little overlap, thus casting shadows
that can be predicted from tree geometry and sun angle.
Savanna canopies are more translucent than conifers, hav-
ing lower LAI, and cast weaker shadows. The simple
model is still applicable because the components’ signa-
tures are calculated from the imagery, although the con-
trast between G and X, will be reduced in this woodland
type.

Woodland and savanna, or wooded grassland, will be
defined as the subtropical and tropical vegetation forma-
tions where the grass stratum is continuous, trees and
shrub cover are greater than five percent and less than
eighty percent, where fire occurs, and where the growth
is closely associated with alternating wet and dry seasons
[42]. We chose to test the model for woodland sites in
Africa because of the global extent and importance of this
physiognomic type. Woodland and wooded grassland
cover ten to twenty percent of the land surface, greater
than any other surface cover type (except desert and ice)
[43]. Dry woodlands and wooded savanna (with tree cover
greater than ten percent) are presently estimated to cover
486.4 million ha or 22.2 percent of the continent of Af-
rica, including 8.6 million ha in Mali [44]. Woodlands
are often monospecific (one or two dominant types of
trees) or nearly so, of low density, have a uniform her-
baceous understory, and occur over extensive areas of flat
terrain.

We tested the model in study sites in the Sahelian and
Sudanian bioclimatic zones in Mali, West Africa (Fig. 3).
The Sahel is usually defined with reference to mean an-
nual isohyets and corresponds to the 200-600 mm annual
precipitation zone [45]-[49]. The vegetation of the Sahel
ranges from an open annual grassland with less than ten-
percent woody cover in the north to perennial grasses with
25 percent or more tree cover in the south. In the Sahelian
zone in northern Mali, four test sites were located in the
Gourma region, three from among those being monitored
by The International Livestock Centre for Africa (ILCA/

Mali) in collaboration with the GIMMS Project (Global
Inventory, Monitoring and Modeling System; National
Aeronautics and Space Administration, Goddard Space
Flight Center) [50]-[53]. The fourth site was added in this
study. Although tree cover is generally low in the Sahel,
woodlands are locally dense in low-lying inundated areas,
and all of our sites were located in these dense woodland
stands (30-60 percent cover). Three of these sites are
dominated by Acacia seyal Del., one by Acacia nilotica
(L.) Willc. ex Del. (all nomenclature follows [54]).

The Sudanian zone is the region to the south of the
Sahel, lying between about 11° and 13° N in West Af-
rica, where the rainfall is 600-1000 mm, the rainy season
lasts four to five months, and there is permanent agricul-
ture. The vegetation is a mosaic of open crop/woodland
or savanna, with trees up to 15 m tall, some closed wood-
land, and edaphic bush thickets and grasslands [55]. The
Sudanian test sites are located within the administrative
region of Ségou, Mali. The crop/woodland type of veg-
etation is formed when crops are grown under a woodland
of useful trees that are preserved when land is cleared [56].
Three sites are dominated by Buryrospermum parkii (G.
Don) Hepper and three by Acacia albida Del. All sites
are located in the house fields, cultivated areas near the
village where shrubs and weeds are cleared regularly.

We emphasize that these sites were carefully chosen
based on prior field investigations, reconnaissance, and
photo interpretation, to be representative homogeneous
woodland stands of a certain minimum size and range of
cover. Without any modification, the simple model must
be applied to a stand of uniform density and composition.
Therefore, the landscape must be stratified prior to re-
gional application of the model.

IV. METHODS

Tree shape parameters and tree cover, size and density
were measured in the field to parameterize and test the
model. Sites ranged in size from about 9-90 ha (100-
1000 TM pixels), with most sites about 20-40 ha (200-
500 pixels). This corresponds roughly to the size of the
1-km-diameter circular plots used by Hiernaux and Jus-
tice [52] in their advanced very high resoluton radiometer
(AVHRR) study.

Four to eight fixed-radius plots were located systemat-
ically within sites (at regular intervals on a rectangular
grid or line) in order to sample all parts of the stand, and
not bias the location of the plots. Plot radius was fixed
within, but variable among sites, and was established by
taking preliminary density measurements and choosing a
radius that would include approximately 50 trees per site
(see Fig. 4 for an example of plot size). Tree height (H ),
crown diameter (= 2r), and height to widest crown di-
ameter were measured for all trees in each plot.

Average h and b (see Fig. 1) were calculated for the
site, and were used with the sun angle for the TM scene
to calculate I' from the geometry of an ellipsoid on a stick.
The model parameter C,» was calculated from sample data
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Fig. 3. Location of test sites in West Africa.

Fig. 4. A portion of site 15 shown on a dry season aerial photograph from
1988 with plot size (25 m radius) indicated by the circle. Tree crowns
are clearly visible.

for the sites. Size distribution was examined by inspecting
histograms of tree size (expressed both as crown size and
height) for all sites. Spatial pattern was established by
mapping point patterns of 200-900 trees from low-alti-
tude aerial photographs in sample quadrats within test sites
for which there was good photo coverage (sites 2, 15,
20), and analyzing using quadrat analysis [15], [57] and
second-order analysis of intertree distances [58].

Observed cover for the sites was estimated from the
sample plot data. Independent cover estimates for some
of the plots from line transect (from [51} and {53]) and
photointerpreted point intercept on a grid (by the authors;
see [59] for methods) were also used to test the model.
These compared favorably with the field measurements,
within the expected range of variance (see [25, Table 1]).

TM data were used to test this model. Early dry season
imagery was chosen to enhance the contrast between trees
(still green for most species) and background (a dry her-
baceous layer, or bare soil). The TM scene for the Sahe-
lian sites was acquired September 9, 1984 at the end of a
very poor rainy season [52], [60], but just after a local
rainfall event in the study area [50]. A second Sahelian
scene, acquired May 7, 1985 at the end of the dry season,
was also used to test the model. The scene for the Sudan-
ian sites dates from November 17, 1984, after the harvest,
so the fields beneath the tree canopy have been cleared.
The mean and variance of reflectance for all pixels (S and
V(S§)) were computed for each spectral band in the test
sites.

The component signatures required by the model are
simply the relative brightnesses of the components (back-
ground, tree, and shadows) compared to the mean bright-
ness of the stand, not the absolute radiance or reflectance.
The signatures were established from the satellite data,
because it would have been very difficult to calibrate them
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TABLE 1
TM SPECTRAL BANDS

™ Wavelength

band (pem)
1 0.45-0.52
2 0.52-0.60
3 0.63-0.69
4 0.76-0.90
5 1.55-1.75
7 2.08-2.35

accurately from field radiometer measurements in a het-
erogeneous environment, and to project them through a
modeled atmosphere. Signatures for background and can-
opy (G and X;) were initially computed from small train-
ing areas in the image, using aerial photographs as a
guide. Areas of no tree cover in or near sites were used
to estimate G, and pixels with high tree cover were used
to estimate X,. Comparable and satisfactory results were
obtained by automatically choosing the extreme pixel val-
ues from the histogram of the brightness values in the site
as the G and X, signatures. It was possible to predict G
and X, using the model in these sites for which N and R?
were known, and compare predicted values to those ob-
served in training sites or the histograms.

The model was tested by providing the stand parame-
ters (T and C,.) and the spectral parameters (G, X,, S,
and V(S)), predicting R? and N for each site, and com-
paring to actual R? and N from field measurements. Ob-
served and predicted values were compared by simple
regression. The model was tested for all visible and in-
frared TM bands (1-5 and 7; see Table I for wavelength
bands) and then for a subset of bands, TM 3, 4, and 7.
Band 3 was chosen because in our experience red reflec-
tance is strongly related to tree cover [61], [62], band 4
because of its relationship to green vegetation amount
[63], and band 7 because it had the highest variance in
the sites, and has also been shown to be related to tree
cover [64]. These bands are from different regions of the
spectrum and tend to be uncorrelated. Finally, the model
was tested using transformed spectral channels, the nor-
malized difference vegetation index (NDVI) [65], [66]
representing image greenness, and the first principal com-
ponent representing image brightness.

V. RESULTS
A. Stand Parameters

The tree shape measurements for the sites (height H
and crown radius 7) and the derived model parameters T’
and C,» are shown in Table II. The trees in the Sudanian
sites are taller, with relatively narrower crowns, and in
the Sahelian sites, the trees are shorter with relatively
wider crowns. In site 15 the trees are essentially balls of
foliage sitting on the ground, and I' is smaller than for
site 101 because even though the average crown is smaller
in 101, it is elevated off the ground and more shadow is
visible. The average I' for the Sahelian sites is 5.1. The

TABLE 1I
TREE SHAPE MEASUREMENTS FOR STUDY SITES

| Height (m) | Crown Radius (m) |

Site Species n r C,2
mean [ o [memn | o |
SUDANIAN SITES
1 Butyrospermum pavkii 35 8.35 2.44 3.67 1.19 7.00 5164
2 Butyrospermum parkii 50 8.61 2.04 4.13 1.60 6.67 | 7780
3 | Acacia albida 32 11.07 1.96 4.15 1.02 7.28 | .2612
4 Acacia albida 63 13.17 | 3.01 5.57 2.06 7.10 | 5682
5 | Acacia albida 60 1158 | 2.38 4.91 172 7.07 5616
7 Butyrospermum parkii 50 12.60 | 2.71 4.72 1.36 7.55 2069
SAHELIAN SITES
15 Acacta nilotica 56 5.64 1.59 3.56 1.25 4.72 | 6816
20 | Acacia seyal 87 5.27 | 1.86 3.06 1.08 5.00 | 4385
21 | Acacia seyal 75 488 | 1.53 2,50 0.88 5.30 | 5151
101 Acacia seyal 105 5.02 1.16 2.45 0.90 5.30 | 5797

Sudanian sites have larger I' because the TM scene was
imaged later in the fall so the solar angle is greater. Av-
erage I' for the Sudanian sites is 7.1.

Tree size distributions for all sample populations were
slightly to extremely right-skewed. This concurs with
other studies of the West African savanna (summarized in
[67]). Log-transforms produced normal-looking distribu-
tions. Fig. 5 presents two examples of size parameters
(crown area and height) as log-normalized. Thus, if field
measurements were not available, the assumption of a
lognormal size distribution is valid for these sites, and the
formula for C,. for a lognormal distribution could be used.
However, for these sites C,. was calculated directly from
sample data, and ranges from 0.26 to 0.77 (Table II).
There is no apparent difference in the C,. values between
the two regions; however, the value is sensitive to the
presence of a few very large crowns in the sample popu-
lation (as in sites 2 and 15).

Fig. 6 shows the point locations and results of second
order analysis for one of the sites. In all sites there is
generally an inhibition distance of 5-10 m, below which
the probability of finding two trees is very low, but at
relevant sensor resolution (20-50 m) a Poisson model is
adequate. This is supported by the quadrat analysis (Table
IIT). At larger distances (20-100 m) a Poisson model still
fits in many of the sites, including the sparser stands (site
2) at densities where the Poisson model broke down in
our earlier studies of California pine stands [15].

The actual tree size (expressed as squared crown ra-
dius), density, and cover for the sample sites are shown
in Table IV. Sahelian sites have small trees at higher den-
sity. Sudanian sites have very large trees at low density,
and generally lower cover.

In order to compare observed size, density, and cover
with predicted values obtained by model inversion, esti-
mates of sample variance in these quantities are required.
These estimates help to indicate how much of the differ-
ence between the predicted and observed values results
from sample variance rather than disagreement between
model and measurement. For r?, variance is simply de-
termined using the many individual tree count measure-
ments for all plots taken at a site. However, for N, the
sample size within a site was small, ranging from four to
eight. To determine whether or not sample variance should
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Fig. 5. Histograms of size distributions for (a) Acacia nilotica (crown area) and (b) Acacia albida (height). The quantile-quantile (Q-Q) plots represent
the data plotted against corresponding quantiles of the normal distribution (units are standard deviations). If the points fall in a straight line, they are
normally distributed. (c), (d) raw values; (e}, (f) lognormal values.
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(a)

SECOND ORDER ANALYSIS
GOURMA SITE 15
(n=589)

L;(d)

5 20 25 40
d(m)
(b)

Fig. 6. (a) Point locations of trees, Gourma Site 15 with grid of 30-m
quadrats overlain. (b) Cumulative frequency of observed interpoint dis-
tances (L; [d]). The diagonal is the expected frequency for a Poisson
distribution, and the lines surrounding it are the 0.05 significance level.

be based on within-site measurements, or are sufficiently
similar between sites or regions that pooled estimates
should be used, we conducted three analyses of variance
(ANOVA’s) (Table V). The ANOVA’s showed signifi-
cant difference at region and site levels, indicating that
pooling was inappropriate. Accordingly, the standard de-
viations shown in Table IV are based on within-site mea-
surements.

B. Effect of Model Approximations

Equation (6) was almost always the best predictor, al-
though in a few cases (5) was better. Therefore, (6) was
accepted as being a reasonable approximation ( V(m) was
fairly large), and in all analyses, the results from this ap-
proximation are presented.

TABLE 111
QUADRAT ANALYSIS: FIT TO POISSON DISTRIBUTION
Quadrat n n
Size quadrats  points mean x? df
Site 15 (Acacia nilotica )
10 784 587 0.7 4.7 3
20 196 587 3.0 4.7 9
25 121 567 4.7 8.0 12
30 81 547 6.8 3.1 13
35 64 587 9.2 9.1 18
40 49 587 12.0 209 24
50 25 466 18.6 T 10 27
Site 20 (Acacia seyal)
20 182 838 4.6 10.0 10
25 121 877 7.2 24.8 18
30 81 850 10.5 25.9 19
35 56 780 13.9 T 15 28
40 42 757 18.0 T 51 30
Site 2 (Butyrospermum parkii )

10 625 223 0.36 3.1 0
20 144 212 1.47 0.3 4
30 64 213 3.3 3.9 7
40 36 213 5.9 5.8 14
50 25 223 8.9 6.4 17
60 16 213 13.1 11.3 26

* significantly different at .05 level

TABLE IV
ACTUAL TREE SIZE, DENSITY, AND COVER

0

Sit {Crown radius)? (m”) Density (ha™!) Cover (%)
ite
mean [ o | n mean ‘ o | n | sampled I photo
SUDANIAN SITES
1 14.85 10.67 35 45.74 13.84 4 22
2 19.58 17.27 50 30.36 6.65 6 19 27
3 18.25 9.33 32 35.72 7.44 4 21
4 35.18 26.52 63 21.40 12.23 8 24
5 27.02 20.25 60 12.74 8.37 6 11
7 12405 | 13.11 50 10.61 3.08 6 08
SAHELIAN SITES
15 14.21 11.73 56 71.30 40.53 4 32 23
20 10.53 6.97 87 168.07 24.63 3 56 39
21 7.03 5.04 75 149.21 26.29 4 33 44
101 6.82 5.19 105 133.69 154.55 4 29 _
TABLE V
ANOVA OF DENSITY IN SAMPLE SITES
Source of Variation F 4
Regions vs. plots within regions 1357.51  0.0000
Sudanian Sites, sites vs. plots within sites 61.82  0.0000
Sahelian Sites, sites vs. plots within sites 4.51  0.02
Sahelian Sites. without site 101 36.48  0.0001

C. Early Versus Late Dry Season Imagery

For the Sahelian study region, we hypothesized that the
September 1984 image (recorded following a rainfall
event) would have a green herbaceous layer of varying
density or standing water in sites 15, 20, and 21, causing
low separability of component signatures, and that late
dry-season (May 1985) imagery would work better in the
model. This is true for site 20, the only site for which
G,y (brightest pixel in stand) is darker than Goreq (prob-
ably due to herbaceous growth or inundated soil in the
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Fig. 7. Obscrved versus predicted stand parameters for band 3, 4, 7 median, (a) cover, (b) density (N ), (c) size (R?), (d) cover substituting photoin-
terpreted values for sites 2, 15, 20, (e) density with sample variance (£ one standard deviation) and range of predicted values plotted, (f) size with
sample variance ( + one standard deviation). and range of predicted values plotted. A star (*) indicates predicted values in one band that is much
greater than the range of the y-axis shown. Points are labeled by site number; numbers followed by 0.5 are based on 1985 TM data. All other points

are based on 1984 spectra data.

site). However, the May 1985 late dry season imagery did
not consistently predict cover better than the 1984 im-
agery for the Sahelian sites (see Fig. 7). It is difficult to
discern a pattern with only four points; however, it ap-
pears that as long as there is some spectral contrast be-
tween background and tree, the model can be inverted. It
can be seen in Fig. 8 (shown for 1984 data) that for sites
15 and 101, G and X, don’t separate well in greenness
(NDVI), but the contrast is better in brightness, and the
predictions of the model are reasonable.

D. Effect of Stand Parameters

We used the average values of C,. (0.45) and T' (7.1
for Sudanian scene, 5.1 for Sahelian), and there was no
systematic change in the accuracy of predictions. There
is little change in the predicted values of R? and N, and
no systematic error caused by holding the stand variables
constant. Predicted cover values only changed by three to
four percent, improving or degrading the prediction by
only that much (Table VI).
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E. Effect of Shape Model

In order to evaluate the effects of shape on the inversion
procedure, we developed an alternative formulation of T
for the shape of a hemisphere on a stick. At least some of
the trees in each plot could be considered to fit this shape
reasonably well. To test this change, we calculate T' for
the sites using the hemisphere model to see if it performed
better or worse than that of an ellipsoid. There was no
consistent difference in the results using the hemisphere
shape. As T increases, predicted R? increases (and pre-

dicted N doesn’t change), so, as I' increases results should
improve in cases where cover was underestimated, and
vice versa. Since there were cases where cover was over-
and underestimated, there was no overall improvement in
model results (see Table VI).

F. Component Signature Estimation

Using unadjusted component signatures, density (N ) is
overestimated and size (R?) is underestimated for all sites
and all bands. This is because the brightest pixel reflec-
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TABLE VI
SUMMARY OF MODEL RESULTS: REGRESSION, OBSERVED VERSUS PREDICTED
STAND PARAMETERS

Trial a b r?
COVER
Six Bands Median 874 +.036 .74
Bands 3, 4, 7 Median 922 +.094 .62
Standard I' and C,: 038 +.682 72
Hemisphere shape model .039 +.652 .76
TREE SIZE (R ?)
Six Bands Median .586 +8.352 .28
Bands 3, 4, 7 Median 756 +7.449 .16
Standard I and C,» 348 +86.511 18
Hemisphere shape model 399 +5.207 .18
Brightness and NDVI 270 +13.170 .04
DENSITY (N)

Six Bands Median .822 +15.280 72
Bands 3, 4, 7 Median 807 +17.992 75
Standard I' and C,2 .810 +7.887 .78
Hemisphere shape model .807 +17.992 75
Brightness and NDVI 591 +36.750 17

tance in the stand (or signatures from training sites) are
overestimates of the background signature G. If G is over-
estimated, the model predicts too many trees, and if N
goes up, R? must go down, so size is underestimated.
When observed and predicted G and X, were regressed,
the coefficient of determination (r?) values were very high
(0.96-0.99). The distributions of Gyreq/Gops and
X(,p,ed/X()ob5 were very peaked (see Fig. 9), so the average
(median) values of Gpreq/ Gops and Xoprea / Xoobs in €ach re-
gion were used to scale G and X, (0.90 and 1.15 in the
Sudanian sites, 0.98 and 1.05 in the Sahelian sites). Thus,
G is slightly darker than the brightest pixel and X, is
slightly brighter than the darkest in all spectral channels
including the near-infrared (band 4), and in composite
image brightness (the first principal component of the
spectral data). This pattern is reversed in composite image
greenness (the NDVI in this analysis). When G and X,
are adjusted using these simple scaling factors, the results
improved, especially for predictions of cover and density.
This adjustment was necessary for obtaining reasonable
predictions, even though it only changed the signatures
by a few DN’s (‘‘digital numbers’’ or brightness levels,
quantized to 256 levels for TM data) because of the ex-
treme sensitivity of the model to the component signa-
tures, especially to the background signature G.

G. Multispectral Predictions

We tested the model for single spectral bands for all
sites (each band is assumed to be an independent predic-
tor). When observed and predicted size and density were
compared for all sites and all single bands, the results were
highly variable. However, the results substantially im-
proved when the median predictions from among the
bands was compared to the observed value. The median
improved the correlation between observed and predicted
values because the scaling of G sometimes caused spu-
rious results for a band. For example, if scaled G (Geq)
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Fig. 9. Histogram of Gyeq/ G, values for Sahelian sites, all TM bands.

was closer than S to X, the result was a negative R® pre-
diction, or an extremely large predicted N. The results
were also calculated for the median prediction from bands
3, 4, and 7, bands that are not strongly correlated (Fig. 7
and Table VI). Results are slightly better for the six-band
median. Fig. 7(e) and (f) also shows that although the
variance in observed N and R’ (estimated from the plot
data) is large in some cases, it is not as great in the ‘*vari-
ance’’ in the multispectral predictions (shown as the range
of the three-band prediction).

H. Transformed Spectral Channels

Successful inversion of the model requires good spec-
tral separability of G and X, (Fig. 2); thus, we explored
the use of multiband transforms to define G and X,,. For
this analysis, we selected the first principal component of
the images as a brightness channel, and used the NDVI
as a greenness channel. Although NDVI is not necessarily
orthogonal to the first principal component, it is well
known to respond to green vegetation in a fashion inde-
pendent of image brightness. Averaging the predictions
of size and density obtained from these two transformed
bands did not produce a better result than the median of
bands 3, 4, and 7 (Table VI), but the resuits are helpful
for graphic interpretation because they correspond to the
idealized spectral channels used by Li and Strahler in their
original formulation of the model. The effect of scaling G
is to create a linear relationship between G, S, and Xj.
Fig. 8 shows the position of G, X, and S for the Sahelian
sites (15, 20, 21, 101) for both observed and predicted
(adjusted) values of G and X,. Separation between G and
X, is best for sites 20 and 21, and cover, size, and density
are predicted more accurately for these sites than for sites
15 and 101 where separation is poorer. The patterns are
similar for the Sudanian sites.
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TABLE VII
AVERAGED REGIONAL ESTIMATES OF TREE SIZE AND DENSITY
R* N -
Region n Observed Predicted Observed | Predicted
mean a mean o mean a nmean a
Sudanian_ | 6 | 2316 | 7.30 | 27.42 | 1021 | 26.10 | 13.60 | 38.2225.80
Sahelian 3 0.65 | 3.23 | 12.89 5.25 | 130,57 | 38.83 | 123.97 [44.40

1. Regional Estimates

When the observed and predicted tree size and density
are averaged for all sites in a region, the results clearly
differentiate the two distinctive regions. As Table VII
shows, the tree dimensions and distribution are very dif-
ferent in the two regions and the averaged predictions for
size and density are very close to the observed averages
for the regions. T-tests show that the regions have signif-
icantly different average size and density (all at least at
the 0.0005 level ). Observed and predicted values for each
region are not significantly different; however, it should
be noted that the sample size for the t-test is small.

VI. SUMMARY AND DISCUSSION

The model doesn’t predict tree size very well for the
ten test sites (r2 = 0.20). Size is both under and over-
estimated. The model predicts density and cover better
(r?is 0.62 to 0.78) in these test sites, where cover ranges
from approximately 10 to 40 percent. It is a reasonable
assumption that V(m) (variance in cover among pixels)
is large at this sampling scale (30-m TM pixels ), and (6)
can be used to approximate R’ for these samples (100-
1000 pixels).

The results support our prediction that the model is sen-
sitive to the choice of the G signature and to the separa-
bility of G and X,. When G is overestimated, tree size is
systematically underestimated, and density overesti-
mated. Scaling G dramatically improved results. Sites and
spectral bands with good separability between G and X,
generally showed better predictions (sites 1, 20, 21, bands
3,5, 7), although there were exceptions. Also in support
of our predictions for these sites with low cover (small
m), the model is not sensitive to variance or error in es-
timating tree shape and size parameters (I' andC,2). Using
a different shape model that slightly changed I', or using
standardized I" and C,., had very little effect on the overall
results.

Best results were obtained by using all spectral chan-
nels for the predictions, and selecting the median value
from among them. This is because scaling the component
signatures can cause spurious results for an individual
band. The best results come from selecting the median
predictions from all six visible and infrared TM bands.
Neither parameter was systematically over- or underesti-
mated for the sites. Reasonable predictions of tree size
and density were also obtained using three largely uncor-
related bands (3, 4, and 7). Actually, correlation among
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the spectral bands should be an advantage, not a problem,
given the formulation of the model. It is not a system of
equations requiring independent variables for its solution,
but rather the bands are instrumental variables that help
to separate the signal from the noise.

The sites that were not predicted well are helpful in
illustrating the limits of the simple model. Cover is under-
estimated in site 20, which has the highest cover value.
As cover increases, trees and shadows do, in fact, over-
lap. S, will approach X as shown in Fig. 2. Therefore,
our estimate of X, is too dark, and for a given brightness,
tree cover will be underestimated. Either tree size is
underestimated when variance is low, or density is under-
estimated when variance is higher. However, in this site
the actual cover may also be underestimated by our plot
data (see Fig. 7(d) and Table IV).

For several of the sites (3, 4, 5, 7), tree density is as
low as one to three trees per pixel. In this case, the pre-
dictions of the model will be strongly influenced by vari-
ations in the background (G ). This will contribute to er-
rors in the prediction of both N and R*. Also, X, will be
incorrectly estimated at low density, causing errors in the
prediction of R*. This can be seen in site 7. The darkest
pixel in the stand doesn’t represent X, because it contains
background. Therefore X, is too bright and R* is overes-
timated. If X, is assigned a lower brightness, closer to the
values for the other Buryrospermum parkii sites (X, =
0.98X,), the predicted value is much closer to observed
(see Fig. 7(c)).

In site 2, density is overestimated and cover underes-
timated. This may be because scaled G is still brighter
than the actual background signature, although when in-
specting the imagery for the stand, there are not any
anomalously bright pixels included in the training data.
However, our photointerpreted cover for the stand is much
greater than is calculated from the plot data, and closer to
the value predicted from the model. In this case the ob-
served values for tree size and density may be low, due
to sample variance or errors in the field measurements.

We conclude that at this scale, in small sites on the
order of 0.5 km®, variations in the understory signature
and other stand parameters cause site-specific predictions,
particularly of tree size, to be poor. This is not surprising,
as many of the factors contributing to reflectance are not
accounted for in the simple model, nor were they con-
trolled for in this study. One of the most important is the
heterogeneity in the background reflectance caused by dif-
ferences in soil color, variable leaf litter cover, and slopes
or microrelief causing differences in surface illumination.
These would all contribute to interpixel variance. On the
other hand, the atmospheric haze so prevalent over the
Sahel would tend to reduce interpixel variance. Neverthe-
less, when our predictions were averaged within the Su-
danian and Sahelian regions, regional differences in the
structure of these woodland types were accurately de-
tected and quantified by the inversion procedure.

Therefore, this procedure could be used more effec-
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tively as part of a multistage inventory to estimate the
average size and density of woody plants directly over
large areas in woodlands ranging from 10 to 40 percent
cover. In an automated procedure, G and X, could be se-
lected from the histograms for 20 or 30 sites in a stratified
region. C,» and I' can be chosen a priori for a vegetation
type. We would expect a good prediction of tree size and
density for a stratum within a region based on the average
from these sites. We feel that the model could be inverted
using Landsat MSS data in this landscape because stands
are sufficiently large that even at 80-m resolution there are
enough pixels (100 or more) to estimate variance.

Because size and spacing are often related to leaf and
woody biomass, this technique could also provide wood-
land biomass estimates over large areas [68]. Besides their
obvious relationship to standing biomass, important
enough in itself, height and spacing could be used to de-
termine surface roughness and other parameters important
to land-surface climatological models [11]. Also, re-
gional-scale ecological models of ecosystem photosyn-
thetic production and biogeochemical cycling may require
input parameters of vegetation structure of the type ob-
tainable through our inversion procedure [4], [69]. This
is especially true in open woodland where tree canopy is
not homogeneous, and its interaction with radiation and
the atmosphere near the ground cannot be approximated
by homogeneous plane-parallel models.

Finally, the inversion procedure may help monitor
desertification—the spread of desert-like conditions into
arid and semi-arid lands, such as the Sahel, caused by
drought and overexploitation of vegetation and soil in the
region [60]. In general, drought reduces density by killing
individual trees (observed by Poupon [71]), while over-
use of trees (coppicing and woodcutting for fuel and fod-
der) reduces crown area, while the number of individuals
may actually increase [72]. These two phenomenon could
be distinguished in a regional context using the inversion
procedure, which could be applied to historical Landsat
data to examine changes in the recent past.
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